Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 9(11)2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-33138093

RESUMO

NF-Y is a transcription factor (TF) comprising three subunits (NF-YA, NF-YB, NF-YC) that binds with high specificity to the CCAAT sequence, a widespread regulatory element in gene promoters of prosurvival, cell-cycle-promoting, and metabolic genes. Tumor cells undergo "metabolic rewiring" through overexpression of genes involved in such pathways, many of which are under NF-Y control. In addition, NF-YA appears to be overexpressed in many tumor types. Thus, limiting NF-Y activity may represent a desirable anti-cancer strategy, which is an ongoing field of research. With virtual-screening docking simulations on a library of pharmacologically active compounds, we identified suramin as a potential NF-Y inhibitor. We focused on suramin given its high water-solubility that is an important factor for in vitro testing, since NF-Y is sensitive to DMSO. By electrophoretic mobility shift assays (EMSA), isothermal titration calorimetry (ITC), STD NMR, X-ray crystallography, and molecular dynamics (MD) simulations, we showed that suramin binds to the histone fold domains (HFDs) of NF-Y, preventing DNA-binding. Our analyses, provide atomic-level detail on the interaction between suramin and NF-Y and reveal a region of the protein, nearby the suramin-binding site and poorly conserved in other HFD-containing TFs, that may represent a promising starting point for rational design of more specific and potent inhibitors with potential therapeutic applications.


Assuntos
Fator de Ligação a CCAAT/antagonistas & inibidores , Fator de Ligação a CCAAT/química , Suramina/química , Suramina/farmacologia , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/química , Sequência de Aminoácidos , Fenômenos Biofísicos , DNA/metabolismo , Humanos , Espectroscopia de Ressonância Magnética , Simulação de Dinâmica Molecular , Multimerização Proteica , Relação Estrutura-Atividade
2.
Behav Processes ; 157: 540-546, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29870799

RESUMO

Human-induced alterations of ecosystems and environmental conditions often lead to changes in the geographical range of plants and animals. While modelling exercises may contribute to understanding such dynamics at large spatial scales, they rarely offer insights into the mechanisms that prompt the process at a local scale. Savi's pipistrelle (Hypsugo savii) is a vespertilionid bat widespread throughout the Mediterranean region. The species' recent range expansion towards northeastern Europe is thought to be induced by urbanization, yet no study actually tested this hypothesis, and climate change is a potential alternative driver. In this radio-telemetry study, set in the Vesuvius National Park (Campania region, Southern Italy) we provide insights into the species' thermal physiology and foraging ecology and investigate their relationships with potential large-scale responses to climate, and land use changes. Specifically, we test whether H. savii i) exploits urbanisation by selecting urban areas for roosting and foraging, and ii) tolerates heatwaves (a proxy for thermophily) through a plastic use of thermoregulation. Tolerance to heatwaves would be consistent with the observation that the species' geographic range is not shifting but expanding northwards. Tracked bats roosted mainly in buildings but avoided urban habitats while foraging, actively selecting non-intensive farmland and natural wooded areas. Hypsugo H. savii showed tolerance to heat, reaching the highest body temperature ever recorded for a free-ranging bat (46.5 °C), and performing long periods of overheating. We conclude that H. savii is not a strictly synurbic species because it exploits urban areas mainly for roosting, and avoids them for foraging: this questions the role of synurbization as a range expansion driver. On the other hand, the species' extreme heat tolerance and plastic thermoregulatory behaviour represent winning traits to cope with heatwaves typical of climate change-related weather fluctuations.


Assuntos
Regulação da Temperatura Corporal/fisiologia , Quirópteros/fisiologia , Ecossistema , Comportamento de Retorno ao Território Vital/fisiologia , Animais , Comportamento Alimentar , Feminino , Itália , Masculino , Telemetria , Torpor/fisiologia , Urbanização
3.
FEBS J ; 285(9): 1653-1666, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29533528

RESUMO

Ice-binding proteins (IBPs) contribute to the survival of many living beings at subzero temperature by controlling the formation and growth of ice crystals. This work investigates the structural basis of the ice-binding properties of EfcIBP, obtained from Antarctic bacteria. EfcIBP is endowed with a unique combination of thermal hysteresis and ice recrystallization inhibition activity. The three-dimensional structure, solved at 0.84 Å resolution, shows that EfcIBP belongs to the IBP-1 fold family, and is organized in a right-handed ß-solenoid with a triangular cross-section that forms three protein surfaces, named A, B, and C faces. However, EfcIBP diverges from other IBP-1 fold proteins in relevant structural features including the lack of a 'capping' region on top of the ß-solenoid, and in the sequence and organization of the regions exposed to ice that, in EfcIBP, reveal the presence of threonine-rich ice-binding motifs. Docking experiments and site-directed mutagenesis pinpoint that EfcIBP binds ice crystals not only via its B face, as common to other IBPs, but also via ice-binding sites on the C face. DATABASE: Coordinates and structure factors have been deposited in the Protein Data Bank under accession number 6EIO.


Assuntos
Proteínas de Bactérias/química , Euplotes/química , Gelo , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cristalização , Cristalografia por Raios X , Euplotes/genética , Modelos Moleculares , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Proteínas Recombinantes/química , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
5.
Ecol Evol ; 7(14): 5310-5321, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28770069

RESUMO

In summer, many temperate bat species use daytime torpor, but breeding females do so less to avoid interferences with reproduction. In forest-roosting bats, deep tree cavities buffer roost microclimate from abrupt temperature oscillations and facilitate thermoregulation. Forest bats also switch roosts frequently, so thermally suitable cavities may be limiting. We tested how barbastelle bats (Barbastella barbastellus), often roosting beneath flaking bark in snags, may thermoregulate successfully despite the unstable microclimate of their preferred cavities. We assessed thermoregulation patterns of bats roosting in trees in a beech forest of central Italy. Although all bats used torpor, females were more often normothermic. Cavities were poorly insulated, but social thermoregulation probably overcomes this problem. A model incorporating the presence of roost mates and group size explained thermoregulation patterns better than others based, respectively, on the location and structural characteristics of tree roosts and cavities, weather, or sex, reproductive or body condition. Homeothermy was recorded for all subjects, including nonreproductive females: This probably ensures availability of a warm roosting environment for nonvolant juveniles. Homeothermy may also represent a lifesaver for bats roosting beneath loose bark, very exposed to predators, because homeothermic bats may react quickly in case of emergency. We also found that barbastelle bats maintain group cohesion when switching roosts: This may accelerate roost occupation at the end of a night, quickly securing a stable microclimate in the newly occupied cavity. Overall, both thermoregulation and roost-switching patterns were satisfactorily explained as adaptations to a structurally and thermally labile roosting environment.

6.
Biochim Biophys Acta Gene Regul Mech ; 1860(5): 571-580, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27677949

RESUMO

The recently determined crystal structures of the sequence-specific transcription factor NF-Y have illuminated the structural mechanism underlying transcription at the CCAAT box. NF-Y is a trimeric protein complex composed by the NF-YA, NF-YB, and NF-YC subunits. NF-YB and NF-YC contain a histone-like domain and assemble on a head-to-tail fashion to form a dimer, which provides the structural scaffold for the DNA sugar-phosphate backbone binding (mimicking the nucleosome H2A/H2B-DNA assembly) and for the interaction with NF-YA. The NF-YA subunit hosts two structurally extended α-helices; one is involved in NF-YB/NF-YC binding and the other inserts deeply into the DNA minor groove, providing exquisite sequence-specificity for recognition and binding of the CCAAT box. The analysis of these structural data is expected to serve as a powerful guide for future experiments aimed at understanding the role of post-translational modification at NF-Y regulation sites and to unravel the three-dimensional architecture of higher order complexes formed between NF-Y and other transcription factors that act synergistically for transcription activation. Moreover, these structures represent an excellent starting point to challenge the formation of a stable hybrid nucleosome between NF-Y and core histone proteins, and to rationalize the fine molecular details associated with the wide combinatorial association of plant NF-Y subunits. This article is part of a Special Issue entitled: Nuclear Factor Y in Development and Disease, edited by Prof. Roberto Mantovani.


Assuntos
Fator de Ligação a CCAAT/química , Multimerização Proteica , Elementos de Resposta , Animais , Fator de Ligação a CCAAT/genética , Fator de Ligação a CCAAT/metabolismo , Humanos , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína
7.
J Med Chem ; 59(10): 5089-94, 2016 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-27120112

RESUMO

Cadherins are transmembrane cell adhesion proteins whose aberrant expression often correlates with cancer development and proliferation. We report the crystal structure of an E-cadherin extracellular fragment in complex with a peptidomimetic compound that was previously shown to partially inhibit cadherin homophilic adhesion. The structure reveals an unexpected binding mode and allows the identification of a druggable cadherin interface, thus paving the way to a future structure-guided design of cell adhesion inhibitors against cadherin-expressing solid tumors.


Assuntos
Caderinas/antagonistas & inibidores , Caderinas/química , Peptidomiméticos/química , Peptidomiméticos/farmacologia , Antígenos CD , Ligação Competitiva/efeitos dos fármacos , Caderinas/isolamento & purificação , Caderinas/metabolismo , Cristalografia por Raios X , Humanos , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade
8.
PLoS One ; 10(7): e0134573, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26230548

RESUMO

Intra-sexual segregation is a form of social segregation widespread among vertebrates. In the bat Myotis daubentonii, males are disproportionately abundant at higher elevations, while females are restricted to lower altitude. Intra-male segregation is also known to occur yet its ecological and behavioural determinants are unclear. We studied male segregation along a river in Central Italy where we tested the following predictions: 1. Upstream ( > 1000 m a.s.l.) males will rely on scarcer prey; 2. To deal with this limitation and exploit a cooler roosting environment, they will employ more prolonged and deeper torpor than downstream (< 900 m a.s.l.) males; 3. Body condition will be better in downstream males as they forage in more productive areas; 4. To cope with less predictable foraging opportunities, upstream males will use more habitat types. Consistent with our predictions, we found that prey were less common at higher altitudes, where bats exhibited prolonged and deeper torpor. Body condition was better in downstream males than in upstream males but not in all summer months. This result reflected a decrease in downstream males' body condition over the season, perhaps due to the energy costs of reduced opportunities to use torpor and/or intraspecific competition. Downstream males mainly foraged over selected riparian vegetation whereas upstream males used a greater variety of habitats. One controversial issue is whether upstream males are excluded from lower elevations by resident bats. We tested this by translocating 10 upstream males to a downstream roost: eight returned to the high elevation site in 1-2 nights, two persisted at low altitude but did not roost with resident bats. These results are consistent with the idea of segregation due to competition. Living at high altitude allows for more effective heterothermy and may thus be not detrimental for survival, but by staying at lower altitude males increase proximity to females and potentially benefit from summer mating opportunities.


Assuntos
Altitude , Quirópteros/fisiologia , Comportamento Sexual Animal , Adaptação Fisiológica , Animais , Feminino , Masculino , Comportamento Predatório
9.
Chemistry ; 21(27): 9727-32, 2015 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-26015289

RESUMO

A series of π-extended distyryl-substituted boron dipyrromethene (BODIPY) derivatives with intense far-red/near-infrared (NIR) fluorescence was synthesized and characterized, with a view to enhance the dye's performance for fluorescence labeling. An enhanced brightness was achieved by the introduction of two methyl substituents in the meso positions on the phenyl group of the BODIPY molecule; these substituents resulted in increased structural rigidity. Solid-state fluorescence was observed for one of the distyryl-substituted BODIPY derivatives. The introduction of a terminal bromo substituent allows for the subsequent immobilization of the BODIPY fluorophore on the surface of carbon nano-onions (CNOs), which leads to potential imaging agents for biological and biomedical applications. The far-red/NIR-fluorescent CNO nanoparticles were characterized by absorption, fluorescence, and Raman spectroscopies, as well as by thermogravimetric analysis, dynamic light scattering, high-resolution transmission electron microscopy, and confocal microscopy.

10.
Acta Crystallogr F Struct Biol Commun ; 71(Pt 4): 371-80, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25849494

RESUMO

Cadherins are a large family of calcium-dependent proteins that mediate cellular adherens junction formation and tissue morphogenesis. To date, the most studied cadherins are those classified as classical, which are further divided into type I or type II depending on selected sequence features. Unlike other members of the classical cadherin family, a detailed structural characterization of P-cadherin has not yet been fully obtained. Here, the high-resolution crystal structure determination of the closed form of human P-cadherin EC1-EC2 is reported. The structure shows a novel, monomeric packing arrangement that provides a further snapshot in the yet-to-be-achieved complete description of the highly dynamic cadherin dimerization pathway. Moreover, this is the first multidomain cadherin fragment to be crystallized and structurally characterized in its closed conformation that does not carry any extra N-terminal residues before the naturally occurring aspartic acid at position 1. Finally, two clear alternate conformations are observed for the critical Trp2 residue, suggestive of a transient, metastable state. The P-cadherin structure and packing arrangement shown here provide new and valuable information towards the complete structural characterization of the still largely elusive cadherin dimerization pathway.


Assuntos
Caderinas/química , Caderinas/genética , Multimerização Proteica , Sequência de Aminoácidos , Cristalografia por Raios X , Humanos , Dados de Sequência Molecular , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
11.
Nanoscale ; 6(22): 13761-9, 2014 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-25286147

RESUMO

Carbon nano-onions (CNOs) are an exciting class of carbon nanomaterials, which have recently demonstrated a facile cell-penetration capability. In the present work, highly fluorescent boron dipyrromethene (BODIPY) dyes were covalently attached to the surface of CNOs. The introduction of this new carbon nanomaterial-based imaging platform, made of CNOs and BODIPY fluorophores, allows for the exploration of synergetic effects between the two building blocks and for the elucidation of its performance in biological applications. The high fluorescence intensity exhibited by the functionalized CNOs translates into an excellent in vitro probe for the high resolution imaging of MCF-7 human breast cancer cells. It was also found that the CNOs, internalized by the cells by endocytosis, localized in the lysosomes and did not show any cytotoxic effects. The presented results highlight CNOs as excellent platforms for biological and biomedical studies due to their low toxicity, efficient cellular uptake and low fluorescence quenching of attached probes.


Assuntos
Compostos de Boro/química , Carbono/química , Nanoestruturas/química , Imagem Óptica/métodos , Compostos de Boro/farmacocinética , Sobrevivência Celular/efeitos dos fármacos , Humanos , Células MCF-7 , Teste de Materiais , Microscopia de Força Atômica , Imagem Molecular/métodos , Espectrometria de Fluorescência/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...